Leukocyte Common Antigen (LCA)/CD45
Mouse Monoclonal Antibody

MM96-6
MM96-10

Document Number: IFU-MM96-6-Leukocyte Common Antigen
Release Date: 10/01/2014

<table>
<thead>
<tr>
<th>Immunogen</th>
<th>Clone</th>
<th>Species</th>
<th>Isotype</th>
<th>Primary Antibody Diluent</th>
</tr>
</thead>
<tbody>
<tr>
<td>BALB/C mice were immunized with human peripheral blood lymphocytes to raise clone PD7/26 and with isolated neoplastic cells from T cell lymphoma to raise clone 2B11.</td>
<td>PD7/26 + 2B11</td>
<td>Mouse</td>
<td>IgG1, kappa</td>
<td>NA</td>
</tr>
</tbody>
</table>

Lot Specific Ig concentration available upon request.

<table>
<thead>
<tr>
<th>Catalog</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM96-6</td>
<td>6 mL Ready To Use antibody for use with StatLab Medical Ultra High Def Polymer - Two Step Detection System</td>
</tr>
<tr>
<td>MM96-10</td>
<td>10 mL Barcoded Ready To Use antibody for use with StatLab Medical Ultra High Def Polymer Detection System on the automated IHC 360 System</td>
</tr>
</tbody>
</table>

Intended Use
For In Vitro Diagnostic Use

Summary and Explanation
The human leukocyte common antigen is a family of five or more high molecular weight glycoproteins of MW 180, 190, 205 and 220 kDa, present on the surface of the majority of human leukocytes. This antibody labels lymphoid cells. It labels neoplastic B and T cells in non-Hodgkin lymphoma and in leukemias of B and T cell types.

Format
This product is supplied as a tissue culture supernatant and contains sodium azide as a preservative.

Principles of the Procedures

Antigen detection by immunohistochemistry (IHC) is a two-step process involving first, the binding of a primary antibody to the antigen of interest, and second, the detection of bound antibody by a chromogen. The primary antibody may be used in IHC using manual techniques or using automated IHC Staining Systems.

Dilution of Primary Antibody
StatLab Medical Ready-to-Use antibodies have been optimized for use with the recommended StatLab Medical Polymer Detection System and should not require further dilution. Further dilution may result in loss of sensitivity. The user must validate any such change.

StatLab Medical Concentrated antibodies must be diluted in accordance with the staining procedure when used with the recommended StatLab Medical Detection System. Use of any detection methods other than the recommended systems and protocols require validation by the user. Antibody dilutions should be appropriately adjusted and verified according to the detection system used.

Materials Required But Not Provided
All the reagents and materials required for IHC are not provided. Pretreatment reagents, detection systems, control slides, control reagents and other ancillary reagents are available from StatLab Medical Products. Please refer to our website at: www.StatLab.com

Storage and Handling
Store at 2-8°C. This antibody is suitable for use until expiry date when stored at 2-8°C. do not use product after the expiration date printed on vial. If reagents are stored under a condition other than those specified in the package insert, they must be verified by the user. Diluted reagents should be used promptly. Unused portions of antibody preparation should be discarded after one day.

The presence of precipitate or an unusual odor indicates that the antibody is deteriorating and should not be used.

Positive and negative controls should be run simultaneously with all patient specimens. If unexpected staining is observed which cannot be explained by variations in laboratory procedures and a problem with the antibody is suspected, contact StatLab Medical Products Technical Support at 800-442-3573 option 5 or E. mail : tech@statlab.com

Specimen Collection and Preparation
Tissues fixed in 10% formalin are suitable for use prior to paraffin embedding. Consult references (Kiernan, 1981: Sheehan & Hrapchak, 1980) for further details on specimen preparation.

The user is advised to validate the use of the products with their tissue specimens prepared and handled in accordance with their laboratory practices.

Precautions
This antibody contains less than 0.1% sodium azide. Concentrations less than 0.1% are not reportable hazardous materials according to U.S. 29 CFR 1910.1200, OSHA Hazard communication and EC Directive 91/155/EC. Sodium azide (NaN3) used as a preservative is toxic if ingested. Sodium
azide may react with lead and copper plumbing to form highly explosive metal azides. Upon disposal, flush with large volumes of water to prevent azide build-up in plumbing. (Center for disease control, 1976, National Institute of Occupational Safety and Health, 1976). Specimens, before and after fixation and all materials exposed to them, should be handled as if capable of transmitting infection and disposed of with proper precautions. Never pipette reagents by mouth and avoid contacting the skin and mucous membranes with reagents and specimens. If reagents or specimens come in contact with sensitive areas, wash with copious amounts of water. Microbial contamination of reagents may result in an increase in nonspecific staining. Incubation times or temperatures other than those specified may give erroneous results. The user must validate any such change. The MSDS is available upon request.

Treatment of Tissues Prior to Staining
Pretreatment of tissues, if any, should be done as suggested: Place the slides in the recommended Antigen Retrieval Solution using an appropriate retrieval/pressure cooker system. Set the temperature for a 15-minute incubation at "High Pressure". Allow slides to cool down for 20 minutes prior to staining.

Staining Procedure
Refer to the following table for conditions specifically recommended for this antibody. Refer to the StatLab Ultra High Def—Two Step Detection System for guidance on specific staining protocols or other requirements.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>StatLab Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Control</td>
<td>Tonsil</td>
</tr>
<tr>
<td>Concentrated Dilution</td>
<td>N/A</td>
</tr>
<tr>
<td>Pretreatment</td>
<td>None</td>
</tr>
<tr>
<td>Incubation Time & Temperature</td>
<td>30 min @ RT</td>
</tr>
<tr>
<td>Detection System</td>
<td>Ultra High Def Polymer - Two Step Detection System</td>
</tr>
<tr>
<td>Tissue Type</td>
<td>FFPE</td>
</tr>
</tbody>
</table>

Quality Control
Refer to CLSI Quality Standards for Design and Implementation of Immunohistochemistry Assays; Approved Guideline-Second edition (I/LA28-A2) CLSI

Troubleshooting
Contact StatLab Technical Support at 800-442-3573 option 5 or Email : tech@statlab.com.

Cellular Localization
Cell membrane

Limitations of the Procedure
Immunohistochemistry is a complex technique involving both histological and immunological detection methods. Tissue processing and handling prior to immunostaining can also cause inconsistent results. Variations in fixation and embedding or the inherent nature of the tissue may cause variations in results (Nadji and Morales, 1983). Endogenous peroxidase activity or pseudoperoxidase activity in erythrocytes and endogenous biotin may cause non-specific staining depending on detection system used. Tissues containing Hepatitis B surface Antigen (HBsAg) may give false positive with horseradish peroxidase systems (Omata et al, 1980). Improper counterstaining and mounting may compromise the interpretation of results.

The optimum antibody dilution and protocols for a specific application can vary. These include, but are not limited to: fixation, heat-retrieval method, incubation times, and tissue section thickness and detection kit used. Due to the superior sensitivity of these unique reagents, the recommended incubation times and titers listed are not applicable to other detection systems, as results may vary. The data sheet recommendations and protocols are based on exclusive use of products manufactured for Statlab. Ultimately, it is the responsibility of the investigator to determine optimal conditions. These products are tools that can be used for interpretation of morphological findings in conjunction with other diagnostic tests and pertinent clinical data by a qualified pathologist.

References